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ABSTRACT: A prognostic closure is introduced to, and evaluated in, NOAA’s Unified Forecast System. The closure
addresses aspects that are not commonly represented in traditional cumulus convection parameterizations, and it departs
from the previous assumptions of a negligible subgrid area coverage and statistical quasi-equilibrium at steady state, the lat-
ter of which becomes invalid at higher resolution. The new parameterization introduces a prognostic evolution of the con-
vective updraft area fraction based on a moisture budget, and, together with the buoyancy-driven updraft vertical velocity,
it completes the cloud-base mass flux. In addition, the new closure addresses stochasticity and includes a representation of
subgrid convective organization using cellular automata as well as scale-adaptive considerations. The new cumulus convec-
tion closure shows potential for improved Madden–Julian oscillation (MJO) prediction. In our simulations we observe bet-
ter propagation, amplitude, and phase of the MJO in a case study relative to the control simulation. This improvement can
be partly attributed to a closer coupling between low-level moisture flux convergence and precipitation as revealed by a
space–time coherence spectrum. In addition, we find that enhanced organization feedback representation and stochastic ef-
fects, represented using cellular automata, further enhance the amplitude and propagation of the MJO, and they provide
realistic uncertainty estimates of convectively coupled equatorial waves at seasonal time scales. The scale-adaptive behav-
ior of the scheme is also studied by running the global model with 25-, 13-, 9-, and 3-km grid spacing. It is found that the
convective area fraction and the convective updraft velocity are both scale adaptive, leading to a reduction of subgrid con-
vective precipitation in the higher-resolution simulations.
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1. Introduction

Atmospheric cumulus convection plays a key role in Earth’s
atmosphere’s general circulation as it contributes to the vertical
transport of heat, moisture, momentum and tracers, and via dia-
batic processes, associated with cloud formation and precipita-
tion, impacts the stability of the atmosphere, and contributes to
the hydrological cycle. In the tropics, the weather is dominated
by atmospheric convection that interacts with larger-scale tropi-
cal waves. Such convectively coupled equatorial waves can span
a few days, for instance Kelvin waves and inertia–gravity waves,
up to a several weeks such as equatorial Rossby waves and the
Madden–Julian oscillation (MJO). These equatorial disturban-
ces drive tropical variability (Kiladis et al. 2009; Zhang 2005)
and are important to weather prediction also outside of the
tropics, since they affect remote weather through tropical to ex-
tratropical teleconnections (e.g., Schreck et al. 2013; Jones et al.
2011; Dias et al. 2021). In numerical weather predictions
(NWP) of the atmosphere, the parameterization of cumulus
convection largely influences the model’s ability to accurately
represent such tropical wave variability (e.g., Chikira and

Sugiyama 2010; Park 2014; Bengtsson et al. 2019b), where one
important consideration is improved sensitivity to moisture in
the troposphere within the cumulus parameterization. While
the mechanism through which the convective parameterizations
are sensitive to moisture may vary (e.g., through entrainment,
closure, enhanced rain evaporation feedback, and convective
initiation), idealized studies have demonstrated that moisture
feedbacks are essential for convectively coupled equatorial
wave initiation and propagation (Mapes et al. 2006). In addi-
tion, studies have shown that particularly the MJO is improved
when convection is made more sensitive to environmental mois-
ture (e.g., Maloney and Hartmann 2001; Benedict and Randall
2009; Tulich and Mapes 2010; Hannah and Maloney 2011; Kim
et al. 2012). Furthermore, a recent study by Liu et al. (2021) in-
dicates that the MJO prediction is largely improved if shallow
convection is not activated until a time composite of moisture
convergence over grid box turns to positive.

In many operational weather prediction centers around
the world, cumulus convection is parameterized using a one-
dimensional (vertical) entraining-detraining plume model to
simulate the vertical heat, moisture, tracer and momentum
transport, as well as cloud and precipitation effects, of all the
active cloud updrafts within a model grid box, averaged over
different stages of their life cycle. The original concept of such
a bulk mass-flux theory stems from the work of Yanai et al.
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(1973) and Arakawa and Schubert (1974), and is based on the
assumption that the area coverage of all the cloud elements in
a grid box is much smaller than the grid box itself, such that
the average effect of the full ensemble of possible cloud ele-
ments in the grid box is in quasi-equilibrium with the resolved
large-scale variables at any instant (steady-state assumption).
However, this underlying assumption of a negligible area
coverage, and statistical quasi-equilibrium at steady state,
becomes problematic when the numerical model resolution
increases, as individual cloud elements can cover a significant
part of the grid box. In this cumulus convective gray-zone
(Dorrestijn et al. 2013; Honnert et al. 2011), in which individ-
ual cumulus clouds are not resolved by the model dynamics,
but the grid box is not large enough to support a statistical ap-
proach, it is suggested that the area fraction may no longer be
neglected (e.g., Gerard et al. 2009; Gerard 2015; Arakawa
and Wu 2013) and that the subgrid-scale variability of the dif-
ferent cloud updrafts should be sampled, rather than repre-
sented by an ensemble mean (e.g., Plant and Craig 2008;
Plant et al. 2015; Monahan and Culina 2011; Bengtsson et al.
2019a).

NOAA’s operational Global Forecast System (GFSv16) is
currently using;13-km grid spacing for deterministic medium
range weather forecasts, the next upgrade to the model is en-
visioned to be fully coupled as the global model application of
NOAA’s Unified Forecast System (UFS). Therefore, we are
fast approaching grid scales at which global operational model
systems enter the gray-zone of cumulus convection.

Thus, the aim of this study is twofold:

1) to propose updates to the model’s cumulus convection
scheme that deviate from the steady-state quasi-equilibrium
assumption, to better simulate cumulus convection at these
higher resolutions. To this goal, a new cumulus convection
closure is developed that exhibits stochasticity, prognostic
evolution, and scale awareness.

2) to introduce moisture sensitivity and convective organi-
zation (three-dimensional considerations using cellular
automata) to the convection scheme via the newly pro-
posed prognostic closure, with the goal of better simu-
lating the coupling between convection and large-scale
circulation.

2. Further considerations about convective
parameterizations

a. Prognostic evolution and moisture sensitivity

Under the assumption of negligible area coverage (large
grid boxes), the convective mass-flux profile is assumed to be
parameterized as the balance between environmental air en-
trainment, and in-cloud detrainment along the edges of the
updraft in a single steady state plume model. Thus, the impact
of increased or reduced area coverage in a grid box is not ex-
plicitly described. If we no longer make the assumption that
the area coverage is negligible, then the mass flux can be de-
scribed directly as M 5 2(svu/g) , where M is the mass-flux
profile, vu is the updraft velocity in pressure coordinates, and

s is the updraft area fraction. Under this formulation, a de-
scription of convective area fraction has to be provided, either
using a constant approximated value, a statistical method (e.g.,
Dorrestijn et al. 2015; Gottwald et al. 2016), or a physical
equation (e.g., Gerard and Geleyn 2005; Gerard et al. 2009;
Gerard 2015).

Gerard and Geleyn (2005), Gerard et al. (2009) and Gerard
(2015), use a prognostic equation for the updraft area frac-
tion, expressed in terms of a moisture budget, where the area
fraction increases in areas of large moisture flux convergence,
and decreases as the moisture content is converted into cloud
condensate, detrained to the environment and precipitated out
as rain. The closure is part of a cumulus convection parameteri-
zation, called 3MT, that has been successfully used to represent
convection at gray zone resolutions in the European regional
numerical weather forecast model ALARO (Termonia et al.
2018). Some observational evidence is supportive of the as-
sumption that the convection becomes stronger with increased
area fraction, which is the key assumption in the formulation of
the mass flux at cloud base in the present study. Furthermore,
there is some evidence that the area fraction is related to strong
moisture flux convergence, which is in turn the underlying as-
sumption in our proposed formulation of the prognostic updraft
area fraction. For instance, Louf et al. (2019) used a C-band
dual-polarimetric radar at Darwin, Australia, in order to pro-
vide guidance of the relationships between convective ensem-
bles and their large-scale environment. They found that the
area-mean convective rainfall in a convective region is largely
determined by the area that is raining. A similar conclusion is
reached in Schiro et al. (2020), who used multiple independent
satellite and reanalysis datasets to study the relationship be-
tween precipitation intensity and the mesoscale convective
system radius. They found that the maximum precipitation in-
tensity linearly increases with increasing radius of the convec-
tive core as well as the whole total system. Furthermore, earlier
observational analysis at Darwin, conducted by Davies et al.
(2013), demonstrated that larger moisture convergence is asso-
ciated with increased convective precipitation through, predom-
inantly, increasing the convective precipitation area. Their
study found that the correlation between convective precipita-
tion area and moisture convergence was significantly larger
than the correlation between convective precipitation area and
convective available potential energy (CAPE).

Therefore, in this study, our starting point is to include
the prognostic evolution of the updraft area fraction from
Gerard et al. (2009) in the description of the convective
closure assumption in NOAA’s Unified Forecast System.
This is done in order to deviate from the quasi-equilibrium
assumption as we go to higher resolution, to improve the de-
scription of the convective life cycle, and to add moisture
sensitivity to the closure of both shallow and deep convec-
tion. It should be noted, that the new closure does not take
the place of a buoyancy-type closure, atmospheric instability
is a crucial component for the initiation and strength of cu-
mulus convection. The full closure is the product between
updraft velocity (buoyancy driven) and the updraft area
fraction (moisture driven).
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b. Stochasticity and convective organization using
cellular automata

In addition to the fact that we can no longer assume negligi-
ble area fraction as the gridbox size is reduced, the standard
deviation of the parameterized fluxes increases with decreas-
ing gridbox size (e.g., Dorrestijn et al. 2013) and the plume
distribution and area coverage, can vary vastly from one grid
box to another. Hence, at higher resolution, the subgrid-scale
variability should be sampled, rather than being represented
by a gridbox mean value. To this end, a number of studies
have explored whether stochastic approaches for deep con-
vection can be used to address statistical fluctuations in cloud
number, initiation or intensity (e.g., Plant and Craig 2008;
Khouider et al. 2010; Dorrestijn et al. 2013; Gottwald et al.
2016; Frenkel et al. 2013; Bengtsson et al. 2013, 2019a, 2021;
Sakradzija et al. 2016; Hagos et al. 2018).

For longer range forecasts (seasonal, decadal, and climate
scale), the relevance of stochastic cumulus convection in nu-
merical models can also be discussed in terms of noise in-
duced forcing. As an example, on the time scale of organized
convectively coupled waves, the small-scale individual convec-
tive plumes grow and decay so rapidly that they are not predict-
able on time scales longer than a few hours (e.g., Hohenegger
and Schär 2007), whereas the organized larger-scale convec-
tively coupled wave envelope can have a deterministic limit of
predictability of about two weeks (Lorenz 1969), or as long as
20 days if considering the tropical region alone (Judt 2020).
Thus, for longer range forecasts, individual convective plumes
can be viewed as stochastic noise–they can have an impact on
the convectively coupled waves (due to noise forcing), but they
are not predictable on their own.

In addition to a prognostic evolution of the area fraction,
and the inclusion of stochastic effects, we also aim at repre-
senting the large-scale effects of subgrid organized convection.
In nature, physical processes driving convective organization
are complex, as the mechanisms are associated with small-
scale physical processes as well as interaction with larger-scales
waves (Huang 1988; Houze 2004; Tompkins 2001; Kiladis et al.
2009). It has also been demonstrated using a cloud classifica-
tion and tracking dataset (Feng et al. 2021) that mesoscale
convective systems (MCSs) play a crucial role in the precipita-
tion–moisture coupling over tropical oceans (Chen et al.
2022). In practice we seek to parameterize the effect of more
convective organization (or aggregation), in such a way that
the large scale would respond to more organization through
e.g., stronger updraft or triggering in the nearby environment
(e.g., Mapes and Neale 2011; Bengtsson et al. 2021; Moncrieff
et al. 2017; Park 2014).

In the current study, sensitivity to including a parameterization
of convective organization using the properties of a stochastic
self-organizing cellular automaton, following the methodology
outlined in Bengtsson et al. (2021) is explored. The cellular au-
tomaton is conditioned on model variables known to control
convective organization (in this study vertically integrated sub-
grid rain evaporation is used). In this way the cellular automaton
provides a simple model for subgrid, and cross-grid, convective
organization that can lead to the enhancement of the updraft

area fraction (Bengtsson et al. 2013, 2021). We use this infor-
mation to enhance the area fraction provided by the new prog-
nostic equation of the area fraction discussed above, in regions
of strong subgrid or cross-gird organization modeled by the
cellular automaton. Furthermore, as discussed in Bengtsson
et al. (2019a), a prognostic equation including stochastic addi-
tive noise, will better represent upscale error growth, when
compared with a local perturbation, because of dynamical
memory of the uncertainty itself.

c. Scale adaptiveness

Last, since the updraft area fraction is not only indicative of
stronger or weaker convection, but is also a function of the
gridbox size itself, we here study the behavior of the new
prognostic and stochastic description of the area fraction at
various resolutions of the global application of the UFS
(GFS), ranging from 25-km grid spacing down to 3 km. The
aim is for the area fraction to become larger with decreasing
grid spacing, but at the same time reduce the strength of con-
vection with decreasing grid spacing as more and more
convection becomes resolved. To achieve this goal, we follow
the methodology outlined in Arakawa and Wu (2013) and
Wu and Arakawa (2014), as described in more detail in the
methodology section next.

3. Methodology

a. Current cumulus convection closure in the GFS

The version of the GFS used in this study is referred to as
GFSv16, which is the version of the GFS currently used for
operational medium range weather forecasts at NOAA. It is
an uncoupled model in which sea surface temperatures are
prescribed. In its operational configuration it uses the FV3 dy-
namical core (see, e.g., Lin and Rood 1996; Lin 2004; Harris
et al. 2016 and references therein) in nonhydrostatic mode,
with 768 grid cells on a cube sphere tile (C768), which corre-
sponds to a global horizontal resolution of about 13 km. It
uses 127 vertical layers, and a model top at 80 km. GFSv16
uses a cloud microphysics scheme referred to as the GFDL
microphysics (Lin et al. 1983; Chen and Lin 2013), which is a
one-moment bulk microphysics scheme using six prognostic
water species. The planetary boundary layer (PBL) scheme is
a scale-aware turbulent kinetic energy (TKE)-based Eddy-
Diffusion Mass-Flux (TKE-EDMF) scheme (Han and Breth-
erton 2019). It utilizes an eddy diffusion mass flux (EDMF)
approach where the local mixing by small turbulent eddies is
modeled using a prognostic TKE and turbulent mixing length,
and the nonlocal mixing by large convective plumes is mod-
eled using a mass flux approach, following Siebesma et al.
(2007). The deep cumulus parameterization is originally based
on Arakawa and Schubert (1974) and Grell (1993), but has
over the years seen substantial updates following Pan and Wu
(1995), Han and Pan (2011), and Han et al. (2017). This deep
cumulus scheme is referred to as the scale-aware simplified
Arakawa–Schubert (saSAS). The scale-aware shallow cumu-
lus scheme is based on Han and Pan (2011) and Han et al.
(2017), employing a mass flux parameterization.
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The current deep convection scheme in the GFS consists of
two optional closure formulations. The first one, which is used
in current operational GFS for medium range weather fore-
casts, computes the updraft mass flux at cloud base using the
Arakawa–Schubert quasi-equilibrium assumption, where the
area fraction is assumed to be much smaller than 1, and thus
negligible:

MBE 5
A 2 a(v)A0

t

M′
Bdt

A′ 2 A
, (1)

A 5

�ZT

ZB

g
CpT(z)

1
1 1 b

[hu(z) 2 hs (z)] dz; and (2)

b 5
L
Cp

q
T

( )
p
: (3)

Here MBE is the equilibrium mass flux at the cloud base.
Buoyancy is represented by the so-called cloud work function
A. Note that, while A is still referred to as the “cloud work
function” here, in practice it is more of a dilute convective
available potential energy (CAPE) variant of the closure in
that in-cloud values are used, and the formulation has devi-
ated somewhat from the original Arakawa and Schubert
(1974) formulation over the years; for example, there is no
factor included for the vertical profile of normalized mass flux
in the current formulation used in GFSv16. The A0 is a refer-
ence cloud work function derived from empirical studies by
Lord (1978); a(v) is a function of resolved vertical velocity, v,
which is used to modify A0; t is a convective adjustment time
scale, inversely proportional to the convective turnover time
following Bechtold et al. (2014); A′ is the cloud work function
after the modification of the thermodynamic fields by an arbi-
trary amount of mass-flux M′

Bdt; T is the environmental tem-
perature; Cp is the specific heat at constant pressure; L is the
latent heat of the vaporization of water; h is the moist static
energy of a parcel; q is the moisture; the subscripts u and s
stand for updraft and saturation, respectively; the overbar
represents the environmental mean value; z is the height; and
ZT and ZB are the heights at the cloud top and base,
respectively.

An alternative closure was introduced to the GFS deep
convection scheme as outlined in Han et al. (2017), for grid
sizes smaller than a threshold value (currently set to 8 km). In
this closure the cloud-base mass flux in the deep convection
scheme is given by a function of mean updraft velocity rather
than by the Arakawa–Schubert quasi-equilibrium closure de-
scribed above:

MBE 5 0:03wur, (4)

where wu is the updraft velocity averaged over the whole
cloud depth (indicated by the overbar) and r is density. The
value 0.03 is essentially a scaling coefficient; however, it can
be viewed as the “negligible” updraft area fraction at low res-
olution, at the base of a bulk updraft, in the case where the
cloud base updraft velocity would be equal to the cloud

average updraft velocity in the model grid box. The updraft
velocity wu is computed following (Simpson and Wiggert
1969):

w2
u/z 5 2c1«w

2
u 1 c2B, (5)

with the buoyancy B5 g(uy,u 2 uy )/uy as a source term (where
uy is the virtual potential temperature and g is the gravity).
The « is the lateral entrainment rate, and the values of the co-
efficients, c1 and c2, are given as 4.0 and 0.8, respectively. Im-
portantly, Eq. (4) is also used for the mass flux at cloud base
in the shallow convection scheme.

In the current GFS cumulus convection schemes (deep and
shallow), scale awareness is considered by reducing the equi-
librium mass flux at cloud base as a function of convective up-
draft area fraction sf, following the proposed framework of
Arakawa and Wu (2013), such that the final cloud-base mass
flux reads

MB 5 (1:0 2 sf )2MBE: (6)

However, different from Arakawa and Wu (2013), which
derives the updraft area fraction from the ratio between the
gridbox mean convective eddy transport, and the equilibrium
mass flux (computed under the negligible updraft area frac-
tion assumption), the GFS deep and shallow convection
schemes use an updraft area fraction sf given by Grell and
Freitas (2014), as

sf 5 3:14R2
c /Agrid, (7)

where the radius of the convective updraft is Rc 5 0.2/«0,
which uses the turbulent lateral entrainment rate of the up-
draft at the cloud-base height ZB, which is «0(zB) 5 c0/zB
(Han and Pan 2011), and the gridbox area Agrid. Since Eq. (6)
is not a reasonable assumption in the low-resolution quasi-
equilibrium regime, the control GFSv16 only applies the
(1.02 sf)

2 scaling at grid sizes smaller than 15 km.

b. Proposed cumulus convection closure

In this study, to deviate from the quasi-equilibrium theory,
we no longer assume negligible area fraction, and thus com-
pute the mass flux at cloud base in a similar manner as Han
et al. (2017), as given by Eq. (4), with the exception of replac-
ing the constant estimate of the updraft area fraction (0.03),
with a prognostic (and advected) physical equation inspired
by the moisture budget equation given by Gerard and Geleyn
(2005) and Gerard et al. (2009):

sB

t

�pT

pB

j(p)[hu(p) 2 hs(p)]
dp
g

5 L
�pT

pB

sBvuj(p)
qcond
g

1 L
�pT

pB

MFC
dp
g
: (8)

Here the source term is the moisture flux convergence
(MFC), which includes the moisture flux from microphysics,
dynamics (advection and divergence), and turbulent moisture
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flux (from the PBL scheme). The sink term is the moisture be-
ing converted into cloud condensation in the updraft. The sB is
the updraft area fraction at cloud base, vu is the updraft velocity
in pressure coordinates (i.e., Pa s21), pB and pT represent the
pressure at cloud base and cloud top, respectively, hu is the
moist static energy of the updraft, hs is the saturation moist
static energy, g is acceleration of gravity, L is the latent heat of
vaporization, and dqcond 5 (q/p)dp is the moisture being con-
verted to cloud condensation in the updraft. The meaning of
j(p) is discussed at a bit more length below.

In Gerard et al. (2009), the entire mass-flux profile is com-
puted asM5 2(suvu)/g, using the same updraft area fraction
at each level su(p) 5 sB, while vu is computed with a prog-
nostic equation at each model level. Thus, the mass flux at
cloud base is consistent with the formulation of the mass-flux
vertical profile. In our approach, we are only modifying the
mass flux at cloud base in the existing convection schemes and
are thus using a different definition of the mass flux in the clo-
sure integral in Eq. (8) and in the rest of the scheme (which
computes the mass-flux profile based on entrainment minus
detrainment). To be more consistent, we here compute a pro-
file of the updraft area fraction su(p) 5 sBj(p), where j(p) is
proportional to the vertically normalized mass-flux profile
h(p), derived using the relationship:

M(p) 5 sBj(p)vu(p) 5 MBh(p) 5 sBvbh(p)
⇒ j(p) 5 h(p) vb

vu(p)
: (9)

Here, MB is the mass flux at cloud base. Then su(p) 5 sBj(p)
is used in the closure integral Eq. (8) for consistency.

After combining Eqs. (4), (6), and (8) and replacing the
area fraction sf with the new prognostic sB, the equation for
the mass flux at cloud base reads

MB 5 2(1:0 2 sB)2
sBvu

g
: (10)

The expectation is that the convective area fraction should
increase with decreasing grid size, as a larger fraction of the
grid box will be taken up by cumulus convection. At the same
time, as we go toward higher resolution, more mesoscale mo-
tion will be resolved by the model, and the parameterized
mass flux should thus decrease with decreasing grid size, to
allow the model to resolve more vertical motions associated
with convection. Thus, the global simulations using 3-km grid
spacing are expected to have a reduction of convective precip-
itation, which is taken over by model-resolved precipitation.

c. Enhanced organization using cellular automaton

In addition to the new prognostic closure formulation, we
also explore the impact of representing subgrid-scale convec-
tive organization feedback and stochasticity represented by
the self-organizing properties of cellular automata following
Bengtsson et al. (2013), (2021). Consistent with the theory
outlined in Mapes and Neale (2011) and Bengtsson et al.
(2021), the updraft area fraction should increase as a conse-
quence of more convective organization/aggregation. This

increase in area fraction leads to enhanced convective mass
flux, increased subgrid precipitation, and consequently stron-
ger subgrid evaporation and cooling from falling precipitation,
which would further enhance organization (due to subgrid-
scale cold pool dynamics). Thus, the impact of more organized
subgrid clouds is a time-lagged but positive feedback on deep
convection development (Mapes and Neale 2011).

The details of the stochastic and self-organizing cellular
automaton implemented in the UFS (in the global applica-
tion–GFS) can be found in Bengtsson et al. (2021). The evolu-
tion of the cellular automaton is an extension to the cellular
automaton known as “Generations,” which is based on the
“Game of Life” (Chopard and Droz 1998) but adds cell
history to the rule set. This means that a newborn cell is given
a lifetime that is incrementally reduced by 1 each time step
where the rules are not met, in contrast to the binary state
1 or 0. The value of the lifetime is determined by the vertically
integrated subgrid rain evaporation and is given a maximum
time scale that depends on the model time step. The cellular
automaton is evolved on a higher-resolution grid than the
GFS model, such that the cells organize themselves into vari-
ous clusters of differing scales on the subgrid. In Bengtsson
et al. (2021), it was found beneficial to let the self-organizing
properties of the cellular automaton inform the cumulus
parameterization scheme of convective initiation in the nearby
environment. It was demonstrated that the near gridscale pre-
cipitation autocorrelation and autocovariance become more
consistent with observations, and that the interaction between
convection and the large scales are improved. For example,
the phase speed of eastward-propagating Kelvin waves better
match the observed phase speeds. In this study, we explore the
impact of letting the cellular automaton increase the updraft
area fraction given by Eq. (8), in regions where the subgrid
rain evaporation driven cellular automaton is exhibiting more
self-organization. This is done by coarse-graining back the cel-
lular automaton onto the GFS model grid, providing an area
fraction representing more or less organization on the subgrid.
This area fraction sCA is then simply added to the previously
computed updraft area fraction given by Eq. (8), and the final
mass flux at cloud base, if the cellular automata contribution is
included, is given by

MB 5 2(1:0 2 sB 2 sCA)2
(sB 1 sCA)vu

g
: (11)

While sCA in individual grid boxes can be on the same order
of magnitude as sB, the contribution to the total updraft area
fraction by the cellular automaton is relatively small in the
mean. This will be discussed in more detail in the next section.

Just as it is not reasonable to assume negligible convective
area fraction at the high resolutions, it is not reasonable to let
the convective area fraction consume the majority of the grid
box in e.g., the 25-km run. To address this, upper level limits
of the area fraction are provided in the scheme, such as
sBMAX 5 (sBMAX # a/dx), where a 5 7000 m and dx is the
gridbox length in meters. This way, the maximum value of the
updraft area fraction is 0.28, 0.54, 0.78, and 1.0 for the 25-, 13-,
9-, and 3-km resolutions, respectively. Similar to the argument
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stated above [that Eq. (6) is not a reasonable assumption in
the low-resolution quasi-equilibrium regime], this also applies
for Eq. (11). Thus, the new formulation only applies the scal-
ing (1.02 sB 2 sCA)

2 at grid sizes smaller than 13 km.

4. Experimental setup

The experiments conducted in this study are set up to assess
the impact of the new deep and shallow convective closure on
tropical variability, MJO prediction, as well as scale adaptive-
ness at gray-zone resolutions. Thus, we carry out model runs
at lower resolution (;25 km), to be able to run seasonal simu-
lations (90 days), for five sets of initial conditions ranging
from 19 October to 3 December 2019, 5 days apart. This set
of runs allow us to study the impact on the model seasonal
mean state, wave propagation, space–time spectra and mois-
ture coupling. In addition, we carry out 25-day simulations at
the current operational higher resolution (;13 km) for an
MJO case study, to investigate the model’s ability to propa-
gate and maintain an MJO event with and without the pro-
posed new closure, as well as the impact of the feedback from
more subgrid organization provided by the cellular automa-
ton. Last, we run very high-resolution global simulations at
;9- and;3-km resolution. These are only run out to 24 h be-
cause of the extremely high computational cost associated
with the 3-km global run. A caveat with such short simula-
tions could be that the model is still adjusting to an equilib-
rium state and spinup effects may still be visible. In these
runs, we study the scale-adaptive behavior of the convective
mass flux, convective and total precipitation, comparing the
control with the new prognostic closure. Table 1 summarizes
the set of experiments carried out in this study.

In all of the experiments we initialize the model for the at-
mosphere, land surface and sea surface temperature (SST)
from preoperational model runs corresponding to GFSv16,

and SSTs are relaxed to a climatology on a time scale of
90 days to account for seasonality (as done in operations).
There is no other stochastic parameterizations or effects in-
cluded in these simulations besides the cellular automata.

In this study, sCA provides a relatively small increase to the
domain mean updraft area fraction. The cellular automaton
is, as such, a modest perturbation to the overall cloud-base
mass flux, and therefore, does not substantially change the
overall level of convective activity in the model as seen in the
mean (Fig. 1). Figure 1 shows the equatorial mean time series
of sB, and sB 1 sCA, from the prog_low and the ca_low ex-
periments (as defined in Table 1), as well as the equatorial
mean time series of convective precipitation (mm day21)
from the prog_low and ca_low experiments. Since sCA and
sB, are computed independently in the ca_low experiments,
the terms can be diagnosed independently, even if it is the
sum of sB 1 sCA that is used as the convective area fraction
in the ca_low experiment. This is shown as a time series of the
tropical average (108S–108N) area fraction, for the 29 October
2019 initial condition, although the behavior is similar for all
five different initial conditions defined in Table 1 (not shown).
The, sB (orange) and sB 1 sCA (green) time series from the
ca_low experiment demonstrate that the impact of the cellular
automaton means a small increase in the mean of the convec-
tive area fraction. If, instead, sB is compared between the
ca_low (orange) and prog_low (blue) experiments, the nonlin-
ear response in sB due to the cellular automaton addition can
be studied. Doing so, it can be seen that sB in the ca_low ex-
periment diverges from sB in the prog_low experiment in a
nonsystematic way for longer lead times. This response is per-
haps clearer when comparing the response in convective pre-
cipitation between the ca_low and prog_low experiments
(bottom panel); the impact of the cellular automaton does
not systematically increase convective precipitation. Thus, it is
concluded that the main impact of the cellular automata

TABLE 1. Description of the experiments conducted in this study.

Expt name Description
Length of
simulation Resolution Initial conditions

Control_low GFSv16 90 days C384 (;25 km) 19 Oct, 24 Oct, 29 Oct,
3 Nov, and 8 Nov 2019

Prog_low GFSv16 with prognostic closure 90 days C384 (;25 km) 19 Oct, 24 Oct, 29 Oct,
3 Nov, and 8 Nov 2019

Ca_low GFSv16 with prognostic closure and
cellular automata

90 days C384 (;25 km) 19 Oct, 24 Oct, 29 Oct,
3 Nov, and 8 Nov 2019

Control_high GFSv16 25 days C768 (;13 km) 19 Oct 2019
Prog_high GFSv16 with prognostic closure 25 days C768 (;13 km) 19 Oct 2019
Prog_ca_high 5

members
GFSv16 with prognostic closure and

cellular automata
25 days C768 (;13 km) 19 Oct 2019

Control_25_short GFSv16 24 h C384 (;25 km) 19 Oct 2019
Prog_25_short GFSv16 with prognostic closure 24 h C384 (;25 km) 19 Oct 2019
Control_13_short GFSv16 24 h C768 (;13 km) 19 Oct 2019
Prog_13_short GFSv16 with prognostic closure 24 h C768 (;13 km) 19 Oct 2019
Control_9_short GFSv16 24 h C1152 (;9 km) 19 Oct 2019
Prog_9_short GFSv16 with prognostic closure 24 h C1152 (;9 km) 19 Oct 2019
Control_3_short GFSv16 24 h C3072 (;3 km) 19 Oct 2019
Prog_3_short GFSv16 with prognostic closure 24 h C3072 (;3 km) 19 Oct 2019
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serves as a noise induced forcing, as the systematic mean forc-
ing is small. It is interesting to note, however, that a system-
atic response to the cellular automata inclusion is visible in
the space–time coherence spectra between low-level moisture
convergence and precipitation (section 5a), and to some ex-
tent in the MJO prediction shown in section 5c in terms of
propagation, amplitude, and phase. This will be exemplified
and discussed in the coming sections.

5. Results

a. Tropical variability, seasonal simulations

The motivation for carrying out and analyzing seasonal sim-
ulations is to study the model’s ability to initiate and propa-
gate convectively coupled equatorial waves at later lead
times, when the influence of the initial state is reduced. The
hypothesis is that there is a stronger coupling between low-
level moisture convergence and precipitation in simulations
using the new prognostic closure formulation, as the new clo-
sure is based on a prognostic moisture budget equation, in
addition to the updraft velocity.

The precipitation mean state over the 90 days is averaged
over the five separate initial conditions (Fig. 2) for the control,
prog_low, and ca_low experiments. In general, the mean
states between the three simulations are not vastly different.
There is some enhanced precipitation along the convergence
zones, in particular over the South Pacific convergence zone
(SPCZ), in the prog_low experiment relative to the control
and ca_low runs, which is an overestimate when compared

with ERA5 (Hersbach et al. 2020). The enhanced precipitation
in the intertropical convergence zone (ITCZ) in the prog_low
and ca_low experiments is generally more in line with the
reanalysis. A reduction of precipitation over Brazil and an
increase in precipitation over Colombia/Ecuador in the experi-
ment is also more in agreement with the reanalysis. Neither of
the hindcasts captures the mean precipitation amounts over
the Indian Ocean that are present in the ERA5 reanalysis.

Table 2 summarizes the global and tropical (108S–108N)
mean total and convective precipitation rates (mm day21) for
the three model simulations. While the changes in mean pre-
cipitation are relatively small, there is a tendency toward
somewhat reduced convective precipitation and increased re-
solved precipitation in the prog_low and ca_low simulations
when compared with the control as a global mean. However,
over the tropical band, there is an increase in mean convective
precipitation in particularly with the new closure, in particu-
larly in the ca_low experiment, from Fig. 2 it can be seen that
this is mainly related to the enhanced precipitation over the
ITCZ.

While the precipitation mean state does not show very large
differences, the Hovmöller diagrams (Hovmöller 1949; Fig. 3)
suggest large differences in the characteristics of the space–
time organization of precipitation. Figure 3a illustrates how
tropical precipitation in ERA5 reanalysis (averaged over the
equatorial band 58S–58N) is organized as coherent precipitat-
ing structures (convectively coupled equatorial waves) zonally
propagating at different space–time scales. The panels in
Figs. 3b–d show the 90-day forecasts of tropical precipitation

FIG. 1. (a) Updraft area fraction (tropical average 108S–108N) as computed using the prognos-
tic closure, sB, and cellular automata, sCA, from the prog_low and ca_low experiments.
(b) Tropical average (108S–108N) convective precipitation (mm day21) from the prog_low and
ca_low experiments. The forecast is initialized at 29 Oct 2019.
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from the control forecast GFSv16, and the forecast with the
new prognostic closure (prog_low), and the experiment with
cellular automata (ca_low), respectively, all initialized on
29 October 2019. These diagrams show that both model runs
quickly deviate from the reanalysis precipitation field, and af-
ter two weeks, it is difficult to say if one model run is perform-
ing better than the other. It can, however, be seen that the

model run with the new prognostic closure tends to generate
more small-scale features, which appear to be less streaky and
more organized. There is also more convection over the
Indian Ocean propagating into the western Pacific Ocean in
the prognostic closure experiment relative to the control run.
The prog_low and ca_low experiments start off similarly,
which is expected as the cellular automata provides a rather

FIG. 2. Precipitation rate (mm h21) averaged over the five different seasonal simulations over
the 90-day forecast period: (a) ERA5, (b) control_low, (c) prog_low, and (d) ca_low.
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small forcing. At longer lead times the two runs start to devi-
ate from each other, and it appears that the ca_low experiment
has somewhat more eastward propagating features than both
the control and prog_low runs. To investigate whether there is
a systematic impact on eastward- versus westward-propagating
features between the different experiments, the space–time
coherence spectra are investigated next.

To investigate whether the organized precipitating envelopes
seen in the Hovmöller diagram are realistic, even though they
might not be occurring at the correct location or time, we ana-
lyze the space–time coherence spectra between precipitation
and low-level (900 hPa) moisture convergence. We follow
closely the methodology outlined in Dias et al. (2018) and
Gehne et al. (2022) to compute the coherence spectra, but in-
stead of using the divergence field, we here compute the coher-
ence between low-level moisture convergence and precipitation.
Each 90-day seasonal simulation is divided into 26-day segments
overlapping by 5 days. The longitude–time cross spectra are
then computed for each segment and at each latitude from 158S
to 158N, and finally averaged over latitude, segments and all the
90 day hindcasts. The symmetric component of the coherence-
squared between ERA5 precipitation and 900 hPa moisture con-
vergence (Fig. 4a) show that regions of high coherence-squared
tend to match up with the Matsuno’s equatorial wave dispersion
curves (Matsuno 1966) for equatorial Rossby waves, inertio–
gravity waves, and Kelvin waves. Figure 4b indicates that the

GFSv16 control run overall underrepresents the observed
strength of the coupling between precipitation and low-level
moisture convergence and it does not display the 5-day peak
associated with Kelvin waves seen in Fig. 4a. To some extent by
design, Fig. 4c shows that the new prognostic closure improves
the overall coupling between precipitation and low-level mois-
ture convergence. In addition, the coherence spectra in Fig. 4c
displays the Kelvin wave 5-day peak that is absent in the control
case, as well as increased coherence along the spectral region as-
sociated with tropical depressions (Wheeler and Kiladis 1999).
Notice that this improvement is consistent with our qualitative
assessment of the Hovmöller diagrams from Fig. 3. It is interest-
ing to note that, while there is no large systematic shift between
resolved and convective precipitation, there is a systematic re-
sponse in the space–time coherence spectra between low-level
moisture convergence and precipitation using the cellular au-
tomata (Fig. 4d). It is difficult to assess how much of this system-
atic response is due to the noise induced forcing, as pointed out
by Berner et al. (2018) injection of noise can have a systematic
influence on oscillating systems, or how much is due to the sys-
tematic forcing of the cellular automata. The convective area
fraction does increase in areas where organization is large, and
this organization is conditioned on subgrid rain evaporation,
which, with physical reasoning, could explain in part, the en-
hanced coherence between low-level moisture convergence and
precipitation.

FIG. 3. Hovmöller diagram of 6-hourly precipitation (mm h21) initialized at 29 Oct 2019 for (a) ERA5, (b) control_low, (c) prog_low, and
(d) ca_low. The precipitation is averaged over the latitude bands 58S–58N.

TABLE 2. Total and convective global and tropical mean precipitation (mm day21) for the three model runs control, prog_low, and
ca_low averaged over the five initial conditions listed in Table 1.

Control (global) Control (tropical) Prog_low (global) Prog_low (tropical) CA_low (global) CA_low (tropical)

Total 3.05 5.19 3.07 5.29 3.05 5.35
Convective 1.82 4.46 1.78 4.50 1.79 4.54
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The results shown in Figs. 3 and 4 suggest that the space–
time organization and propagation of convectively coupled
equatorial waves is more impacted by the updates in the cu-
mulus convection scheme, than what the mean state is. This is
an important remark as it implies that the enhancement of
convective organization on the scales of equatorial waves,
seen with the new prognostic closure, is not necessarily due to
changes in the mean state in which the propagating wave en-
velopes are embedded within.

b. An MJO case study: Sensitivity to closure and subgrid
organization effects

Moisture sensitivity in the cumulus convection parameter-
izations has shown to improve the prediction of the MJO
(e.g., Maloney and Hartmann 2001; Benedict and Randall
2009; Tulich and Mapes 2010; Hannah and Maloney 2011;
Kim et al. 2012). Given that our results thus far show a larger

coherence between convective precipitation and low-level
moisture flux convergence using the new prognostic closure,
an MJO case study is analyzed next.

For theMJO case study analysis, we carry out higher-resolution
simulations using the resolution of the operational GFSv16
(13 km). The hindcasts are initialized on 19 October 2019 and
the forecast goes out 26 days. The MJO amplitude and phase
bias, as well as the MJO propagation phase diagram are com-
puted following closely the methodology outlined in Wheeler
and Hendon (2004), Rashid et al. (2011) and Kim et al. (2018),
which uses projected data onto the leading empirical orthogo-
nal functions (EOFs). The principal component time series
forms an index called the Real-Time Multivariate MJO series 1
(RMM1) and 2 (RMM2) (Wheeler and Hendon 2004). The
forecasts are analyzed in terms of projections of the forecasted
meridional wind component at 200 and 850 hPa as well as the
outgoing longwave radiation (OLR) onto the RMM indices as

FIG. 4. Frequency in cycles per day [frq(cpd)]}zonal wavenumber coherence-squared spectra averaged over all of
the seasonal simulations (90 days) from 158S to 158N between 900-hPa moisture flux convergence and precipitation
for (a) ERA5 valid at the same dates as the 90-day forecasts (see the text for details), (b) control_low, (c) prog_low,
and (d) ca_low. The dispersion curves shown are for equatorial waves as in Wheeler and Kiladis (1999), for equivalent
depths of 12, 25, and 50 m.
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displayed in the two-dimensional phase–space (Fig. 5a), and
amplitude and phase errors can be computed by treating the
RMM indices as a bivariate index following closely Eqs. (1)–(4)
in Rashid et al. (2011) (Figs. 5b,c).

Figure 5 shows the MJO amplitude, phase, and propagation
for the GFS analysis (Kleist et al. 2009) in black, the control
GFSv16 in red, and the experimental run with the new prog-
nostic closure in blue. It can be seen that the experiments
with the prognostic closure lead to an improvement in both
phase and amplitude as well as propagation. While the MJO
in the control run tends to stagnate over the western Pacific,
the MJO in the hindcast with the prognostic closure appears
to follow the analysis closer for about one additional week in
comparison with control. The amplitude is higher in the hind-
cast with the prognostic closure, and nicely picks up in ampli-
tude when the analysis picks up at around day 12. The phase-
speed is increased in the experiment run and matches better
with the analysis when compared with the control run. Taken
together with the previous analysis, it appears that the en-
hanced relationship between low-level moisture convergence
and convective precipitation can be beneficial for prediction
of the MJO in the GFS as demonstrated by this case study.
More cases would need to be explored to understand whether
this is a systematic impact of the new closure description on
different MJO events.

We next explore the impact of the stochastic cellular
automaton. In these simulations, the prognostic area fraction is
further enhanced in regions where a stochastic self-organizing
cellular automaton has formed sufficiently large clusters on the
subgrid. The cellular automaton follows closely the methodology
outlined in Bengtsson et al. (2021), and is conditioned on subgrid

rain evaporation–thus it becomes more organized in regions
related to strong evaporation/cooling from falling convective
precipitation. Figure 6 shows the same analysis as presented
in Fig. 5, with the addition of five runs with the prognostic clo-
sure plus a stochastic enhancement of the area fraction from
the cellular automaton (gray curves). The cellular automata
simulations differ by having a different stochastic seed in its
initialization.

A couple of conclusions can be drawn; first, it appears that
the runs with the stochastic parameterizations do not start to
diverge until after about one week into the simulation, sug-
gesting that the signal from the initial state is dominating the
predictability at these early lead times. After about one week,
the forecasts diverge as the stochastic convection has modu-
lated the large-scale flow in different directions, which can be
interpreted as a noise induced forcing. In terms of propaga-
tion and amplitude, the GFS analysis is centered among the
different perturbed ensemble members initially, however, at
longer lead times the amplitude of the MJO seems to system-
atically be increased in the runs using cellular automata. An-
other observation is that the ensemble spread among the
members is larger for the MJO amplitude than it is for the
MJO phase. There also seems to be a systematic impact in
that the enhanced organization provided by the cellular au-
tomaton tends to increase the amplitude of the MJO at longer
lead times, but at the same time also systematically slows down
the MJO phase speed. The increase in amplitude and decrease
in phase speed is consistent with the impact of the cellular au-
tomaton in reducing the so-called effective normalized gross
moist stability that is shown in Bengtsson et al. (2021). The ef-
fective normalized gross moist stability is an important

FIG. 5. (a) MJO phase diagram, (b) MJO amplitude bias, and (c) MJO phase bias (arctangent of RMM2/RMM1) for the GFS analysis (black),
control_high (red), and prog_high (blue). The MJO phase diagram is calculated as in Kim et al. (2018) and Rashid et al. (2011).
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quantity in the study of tropical moisture modes (e.g., Adames
and Maloney 2021, and references therein) because it diagno-
ses the impact of convection on the thermodynamic environ-
ment due to moisture–convection and cloud–radiation
feedbacks, which, in turn, affect the MJO propagation and
maintenance. In a future study we plan on evaluating how the
new closure fully impacts these feedbacks and therefore simu-
lations of the MJO. The cellular automata results suggest that
while there could be some room for improvement in terms of
the impact on MJO phase speed, the methodology offers a
novel approach to parameterizing a feedback from subgrid
convective organization, and offers a methodology to provide
uncertainty estimates associated with cumulus convection on
seasonal prediction.

c. Scale-adaptive behavior of the scheme

As stated previously, the expectation is that the convective
area fraction should increase with decreasing grid size, as a
larger fraction of the grid box will be taken up by cumulus
convection. At the same time, with decreasing gridbox length,
more mesoscale motion will be resolved by the model dynam-
ics, and the parameterized mass flux should thus decrease
with decreasing grid size, to allow the model to resolve more
vertical motions associated with convection. Thus, the global
simulations using 3-km grid spacing are expected to have a re-
duction of subgrid convective precipitation, which is taken
over by the model-resolved precipitation.

The first question to consider is if we can expect that the
prognostic updraft area fraction, as given by Eq. (8), will
approach 1 with decreasing grid size? To answer that, there
are several factors to consider. First, discretizing Eq. (8) and

solving for sB, where the next time step is indicated by a super-
script plus sign and the previous time step is indicated by a su-
perscript minus sign, in the first term on the rhs of Eq. (8) gives

s1
B 5

A 1 D
B 1 C

, (12)

where

A 5 +
L

l51
f l[jl(hu 2 hs)]lDpls2

B ,

B 5 +
L

l51
f l[jl(hu 2 hs)]lDpl,

C 5 +
L

l51
f lLl(2vuDtdqcondj)lDpl; and

D 5 +
L

l51
f lLlMFClDpl,

where l represents model levels, f l is an integer that takes on
the value 1.0 if the model level is positively buoyant and has
integrated (from the surface to current level) positive mois-
ture flux convergence; otherwise, it is 0.0. The other terms are
as explained after Eq. (8). From Eq. (12) it can be seen that
the size of the area fraction is primarily determined by the ra-
tio between the source term D (moisture flux convergence),
and the sink term C (moisture converted into cloud in the up-
draft). Term C (in the denominator) does decrease with de-
creasing grid size because of the updraft vertical velocity in
term C decreases with decreasing grid size, whereas term D is

FIG. 6. As in Fig. 6, but with five members of prog_ca_high (gray) added to the plots.
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generally similar across the different resolutions (not shown).
This behavior thus leads to an increase in updraft area frac-
tion with decreasing grid size. However, since the terms in
Eq. (12) are vertical integrals over buoyant levels with posi-
tive moisture flux convergence accumulated from the surface,
the number of vertical levels integrated over are significantly
fewer in the 3-km simulation, relative to the other resolutions.
Thus, it is not straightforward to conclude from Eq. (12) alone
that the updraft area fraction will be much larger at 3 km than
in the 25-km run because the ratio between the terms needs
to be considered.

Figure 7 shows the normalized frequency distribution of the
updraft area fraction, the cloud average updraft velocity and
the cloud-base mass flux from the deep cumulus convection
scheme from our experiment simulation. The values shown
are the instantaneous values after a 24-h forecast, on the
native grids of the different resolution simulations. The majority
of the updraft area fraction values are smaller than 0.1, and we
here zoom in on the values between 0.05 and 0.2. The distribu-
tion of the updraft area fraction generally does shift with
decreasing gridbox size, showing somewhat increased area frac-
tions with decreasing gridbox size. The 3- and 9-km distribu-
tions are quite similar; one explanation for this can be
attributed to the change in number of active levels in the 3-km
simulation as explained above. Furthermore, importantly, the
gridbox size is not the only factor impacting the updraft area
fraction value, as it is also determined based on the moisture
budget equation source and sink terms. Figure 7b shows the dis-
tribution of the cloud average updraft velocity (Pa s21, here
multiplied by 21, such that large positive values indicate strong
updrafts). The peak of the distribution is clearly shifted as a
function of decreasing grid size, illustrating that the updraft ve-
locity is reduced when the buoyancy in the grid box is reduced.
This stems from the fact that the buoyancy term in Eq. (5) is
computed as the difference between the updraft and grid aver-
age properties. Thus, given the same size of the area consumed
by convection, a smaller grid box would lead to mean gridbox
values (the mean of the updraft and environment properties)
that are closer to the updraft properties. Therefore, computing
the buoyancy using the difference between updraft and mean

gridbox values yields a smaller buoyancy with decreasing grid-
box size, and consequently a reduced updraft vertical velocity.
Similarly, the peak of the distribution of the cloud-base mass
flux (Fig. 7c) is also reduced with decreasing grid spacing, and
the distribution tail values (larger mass fluxes) are reduced in
the 3-km simulation. We thus conclude that the proposed for-
mulation of the cloud-base mass flux is scale adaptive, as the
mass flux is reduced with decreasing gridbox size, and as noted,
the main reason for this scale adaptiveness is due to the updraft
velocity being reduced with decreasing grid spacing, and only
partly due to the change in area fraction with decreasing grid-
box size.

The partitioning between subgrid convective and resolved
precipitation at different resolutions is investigated next. The
resolved and subgrid convective precipitation partitioning at
25, 13, 9, and 3 km are considered in the control GFSv16 fore-
cast as well as in the experiment with the prognostic area frac-
tion, and are presented in Table 3 for the tropical band
108S–108N, as well as over the global domain. The precipita-
tion values for all the experiment presented in Table 3 are
first coarse grained to a common 25-km-resolution grid.

Observations and reanalysis indicate that the climatology of
the global mean total precipitation is around 2.7–3.3 mm day21

(Hassler and Lauer 2021). For instance, the Global Precipi-
tation Climatology Project (GPCP) states that the estimated
mean global precipitation for 2020 from their monthly analysis
is 2.70 mm day21, almost exactly the 40-yr climatological mean
of 2.69 (Adler et al. 2003), whereas NCEP reanalysis monthly
precipitation data over the past 30 years from 1979 to 2008
show a global mean around 3.1 mm day21 (Li et al. 2015).
Thus, this precipitation range is often used as a benchmark
when developing global numerical weather prediction models.
Table 3 shows that the global mean total precipitation in the
control simulation is around 2.9 mm day21 for the 25- and
13-km resolution; however, the precipitation forecast does not
scale well, and the total precipitation at the higher resolutions
(9 and 3 km) underestimates the mean total precipitation
(around 2.5 mm day21). As expected, at the higher resolutions
the precipitation contribution from the subgrid convection
scheme is scaled down, however, in the control GFSv16

FIG. 7. Normalized frequency distribution of (a) updraft area fraction (%), (b) cloud average updraft velocity (2Pa s21), where values
are multiplied by 21.0 such that larger positive values are associated with stronger updrafts, and (c) cloud base mass-flux (kg m22 s21).
Blue, orange, green, and red curves are fields extracted from the prog_25_short, prog_13_short, prog_9_short, and prog_3_short experi-
ments, respectively.
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simulation a large reduction in convective precipitation over
the tropics, specifically over the central Pacific and south
America (not shown) is not compensated for by resolved con-
vection. One reason for this could be that, while the subgrid
mass-flux scheme is scaled down, there is still enough subgrid
convection acting to stabilize the atmosphere inhibiting con-
vection to be initiated over the tropical ocean. The prognostic
closure experiment has somewhat larger values of total precip-
itation in the global mean (around 3.0 mm day21), but does
scale better across the resolutions than the control, mainly as a
consequence of maintaining more subgrid convection at the
higher resolutions over the tropics [in particular over the cen-
tral Pacific (not shown)]. Because of the exceptionally high
computational cost of the global 3-km simulations, it was not
possible to generate longer simulations to investigate the
scale-adaptive behavior at longer lead times, it should be
noted that the spinup of model variables to reach an equilib-
rium state can impact these results.

6. Conclusions and future outlook

In this study we implemented and evaluated the impact of a
prognostic-stochastic closure in the Global Forecast System
application of NOAA’s Unified Forecast System. The closure
is based on a moisture budget (in addition to the buoyancy
driven updraft velocity term) providing a prognostic evolution
of the convective updraft area fraction. The impact of the new
prognostic closure is evaluated in terms of large-scale mois-
ture coupling to convection, its impact on tropical variability,
and the precipitation mean state. In addition, we study the
scheme’s ability to adapt across various gridbox sizes as the
updraft area fraction is also a function of the grid box itself.
The following points represent our main findings:

• While the precipitation mean state is not largely influenced
by the updates to the convection scheme, the space–time
organization of convectively coupled equatorial waves is.
We find that model simulations including the new prognos-
tic closure enhance the coherence between low-level mois-
ture convergence and rainfall associated with the MJO, and
convectively coupled equatorial waves, suggesting that there is
a tighter coupling between dynamics, low-level moisture and
parameterized cumulus convection. The enhanced coherence
between low-level moisture convergence and precipitation

with the proposed parameterization is closer to the observed
coherence seen in the ERA5 reanalysis dataset. The Hov-
möller diagram also shows more small-scale features and
activity in the Indian Ocean propagating convective wave en-
velopes into the western Pacific.

• The amplitude, phase, and propagation of a case study
MJO event with the new prognostic closure is improved,
when compared with the control GFSv16 simulation, better
agreeing with the GFS analysis. Given the large number of
studies in the literature suggesting that the MJO represen-
tation is improved when the convection is made more sensi-
tive to tropospheric moisture, our results indicate that, at
least in part, the improvements that we find in the MJO
event can be attributed to the closer coherence between
low-level moisture flux convergence and precipitation along
these wave modes. More MJO cases need to be studied in
order to fully understand the systematic impact of the
newly proposed closure on the MJO.

• Inclusion of enhanced organization feedback and stochastic-
ity in the cumulus convection as modeled by self-organizing
cellular automata suggests that the MJO propagation and
amplitude is sensitive to small perturbations within the
convection scheme, and the propagation tracks start to di-
verge after about 2 weeks (far away from the initial state).
Toward the end of the simulation (after three weeks), the
impact of the cellular automata appears to be a systematic
enhancement in MJO amplitude, and a systematic reduction
in MJO phase speed. The ensemble spread is centered around
the GFS analysis, suggesting that the uncertainty estimates
provided by such noise induced forcing are reliable.

• Last, we study the scale-adaptive behavior of the new prog-
nostic closure. We find that, at 3-km grid spacing, the con-
vective precipitation is reduced less in our experiment sim-
ulation, than the convective precipitation in the GFSv16
control simulation. However, it appears that the resolved
precipitation does not pick up sufficiently over the central
Pacific in the control run, and thus, in this particular region
the convection does not scale well across resolutions in the
control. We also conclude that the scale-adaptive behavior
of the scheme is mainly attributable to a large decrease in
parameterized updraft velocity with decreasing grid size.
The scale adaptiveness of the updraft area fraction itself
is complex as the physical quantities in the prognostic

TABLE 3. Total and convective global and tropical mean precipitation (mm day21), computed at forecast lead time 24 h for the
control and prognostic closure simulations at 25-, 13-, 9-, and 3-km resolution, coarse grained to a common 25-km grid before taking
the latitude weighted mean.

Global mean total
precipitation

Global mean
convective precipitation

Tropical mean total
precipitation

Tropical mean
convective precipitation

Control_25_short 2.91 1.88 5.38 4.58
Prog_25_short 2.96 1.86 5.79 4.82
Control_13_short 2.92 1.81 5.40 4.52
Prog_13_short 2.97 1.81 5.69 4.65
Control_9_short 2.53 0.85 4.57 2.11
Prog_9_short 3.01 1.86 5.59 4.60
Control_3_short 2.48 0.45 4.35 1.07
Prog_3_short 2.82 0.85 5.29 2.07
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equation are integrated over buoyant layers, which them-
selves change drastically depending on gridbox size.

This study is in agreement with previous literature indicat-
ing that the quasi-equilibrium steady state assumption in cu-
mulus parameterizations becomes invalid as the gridbox size
decreases, since the assumption of negligible area fraction is
no longer applicable and, to address this limitation, we pro-
posed an alternative cumulus convection closure for use in
NOAA’s Unified Forecast System. It also confirms the find-
ings in previous studies that have demonstrated that convec-
tively coupled equatorial waves are highly sensitive to the
cumulus convection scheme in NWP models, and that a closer
coupling between low-level moisture and cumulus convection
is important for MJO prediction. Therefore, improvement of
NOAA’s Unified Forecast System performance in the tropics,
and the downstream effect on the global scale of such im-
provement, can benefit from the proposed updates to the con-
vection scheme outlined in this study.

In this study we did not carry out an evaluation of the
scheme’s performance in terms of precipitation prediction skill.
We anticipate that seeing any statistically significant improve-
ment in terms of such skill metrics will require careful integration
with other physics components such as PBL and microphysics
schemes and optimization of the model performance via careful
calibration of the whole physics suite. Our near term plan is to
move forward with such a physics suite integration based on the
latest version of the UFS model code base, which has seen sub-
stantial updates in the model physics, relative to the current oper-
ation version GFSv16. In addition, we further aim to evaluate
the scheme’s performance in terms of tropical cyclones because
their track and intensity are highly sensitive to the strength of the
mass flux in the cumulus convection scheme.
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